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Numerical simulation of uncon�ned �ow past
a triangular cylinder
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SUMMARY

Numerical simulations of two-dimensional laminar �ow past a triangular cylinder placed in free-stream
at low Reynolds number (106Re6250) are performed. A �nite volume method, second-order accurate
in space and time, employing non-staggered arrangement of the variables with momentum interpola-
tion for the pressure–velocity coupling is developed. Global mode analysis predicts Recr = 39:9 which
con�rms the results of earlier studies. Vortex shedding phenomena is found to be similar to the square
cylinder with no second bifurcation in the range of Re studied. A discussion on the time-averaged drag
coe�cient, rms of lift coe�cient and Strouhal number is presented. Particle tracking and the instanta-
neous streaklines provide an excellent means of visualizing the von K�arm�an vortex street. Copyright
? 2006 John Wiley & Sons, Ltd.

KEY WORDS: triangular cylinder; onset of vortex shedding; pathlines; streaklines; laminar
vortex shedding

1. INTRODUCTION

Flow around blu� bodies has been a topic of intense research for the last 100 years
owing to its applications with engineering signi�cance. Electronic cooling, heat exchanger
systems, structural design, acoustic emission are a few to name. It also embodies a great
deal of academic interest due to a range of �uid mechanical issues it presents. In recent
years, it has received attention in terms of both numerical and experimental studies as a
result of ever increasing computational power and advent of new experimental
techniques.

It is understood that above a critical Reynolds number, �ow around slender cylindrical
bodies in general exhibits the well-known time periodic vortex shedding as a result of the
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B�enard–von K�arm�an instability leading to alternate vortical structures known as the von
K�arm�an vortex street. This phenomena is responsible for �uctuating forces on the body that
may cause structural vibrations, acoustic noise emissions and some times resonance triggering
the failure of structures. Thus, it is important from engineering point of view to investigate
�ow around slender bodies with di�erent shapes.

Large number of investigations on �ow past circular cylinder have been accomplished in
the past by many researchers [1–4]. A thorough review on this topic can be found in Refer-
ences [5, 6]. These works shed light on the behaviour of �ow in di�erent regime of Reynolds
number, �uctuating forces the body is subject to, �ow transition and the modes responsible
for it. At the critical Re, the twin vortices that form owing to separation become unstable and
vortices are shed. The point of separation for circular cylinder moves downstream along the
surface as Re increases while it is the rear end vertices which remain to be the location of �ow
separation for square cylinder in the Re range close to the critical value. Although, at higher
Re the separation points move along the horizontal edges. Davis and Moore [7] carried out
two-dimensional numerical simulation of �ow past a rectangular cylinder for 1006Re62800.
One of their �ndings was Strong dependence of the drag, lift coe�cients and Strouhal num-
ber on Re. Two- and three-dimensional �ow past a square cylinder for varying aspect ratios
was computed by Tamura and Kuwahara [8]. Okajima [9], through his numerical simulations,
showed that there exists a critical range of Re in which Strouhal number changes are ac-
companied by a drastic change in the �ow patterns. Linear stability analysis of Kelkar and
Patankar [10] gave the critical Reynolds number which marks the onset of vortex shedding to
be 53. Sohankar et al. [11] provided the force coe�cients and Strouhal number for �ow past
a square cylinder for 456Re6250. Saha et al. [12] found the 2D–3D transition to occur at
a Reynolds number between 150 and 175. Recently, Sharma and Eswaran [13] reported the
study of free-stream �ow and heat transfer over a square cylinder with two di�erent thermal
extremities.

Jackson [14] examined the onset of periodic behaviour in two-dimensional laminar �ow
past bodies of various shapes in free stream. He reported the critical Reynolds number as
34.318 and corresponding Strouhal number as 0.13554 for isosceles triangle with base 1 and
height 0.8. Zielinska and Wesfreid [15] numerically investigated the wake �ow behind an
equilateral triangular obstacle with a blockage ratio of 1=15. They found a critical Reynolds
number of 38.3 which was further con�rmed by the experiments of Wesfreid et al. [16].
Abbassi et al. [17] studied the structure of laminar �ow and heat transfer from a built-in
triangular prism placed in a di�erentially heated channel. The transition from symmetric to
periodic �ow was observed at Re= 45 with a blockage ratio of 1=4. Recently, Johansson
et al. [18] computed turbulent �ow past triangular-shaped �ameholders using k–� model. To
the best of our knowledge, laminar �ow around triangular cylinder has not been investigated
extensively which has mainly motivated the present work.

The organization of the paper is as follows. After a brief statement of the problem,
governing equations along with boundary conditions are compiled. In Section 3, a brief
discussion on the numerical method is presented which is followed by validation and grid
re�nement test results. In Section 4, results and discussions, e�ect of domain size, onset of
vortex shedding, steady and periodic �ow description, integral force coe�cients and wake
visualization are dealt separately. The paper ends with the conclusions that summarize the
�ndings.
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Figure 1. Schematic of the computational geometry.

1.1. Statement of the problem

The present paper focuses on the steady and unsteady �ow past an equilateral triangular
cylinder of side h placed in uniform stream. Figure 1 shows the geometry in detail. The
baseline case involves an upstream length Xu = 9h, downstream length Xd = 20h and the free
stream situated at a distance of H = 20h. These lengths have been varied to see their e�ects
on the quality of solution. Discussions on this issue will be taken up in Section 4.1.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The �ow is assumed to be two-dimensional, laminar and incompressible with constant �uid
properties. The set of governing equations contain two momentum equations and the mass
conservation law written in normalized form

@uj
@t

+
@(ujuk)
@xk

= − @p
@xj

+
1
Re

@2uj
@xk@xk

(1)

@uj
@xj

= 0 (2)

where Reynolds number, Re=U∞h=� is de�ned based on side of the cylinder and free stream
velocity. Thus, length and velocity scales used for normalization are h and U∞, respectively.

Various boundary conditions used in the present simulation are brie�y mentioned here.
In�ow plane: Free stream condition for velocity and Neumann boundary condition for

pressure is used at the in�ow plane

u=U∞; v= 0 and
@p
@x

= 0

Solid boundaries: No-slip condition for velocity and normal gradient condition for pressure
is used on the cylinder

u= v= 0 and ∇p · n̂= 0 where n̂ is the normal unit vector
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Far �eld: As the present study focuses on the uncon�ned �ow past a triangular cylinder,
a slip free boundary is taken at a distance of H = 10h where Neumann pressure boundary
condition is applied

@�
@y

= 0; �= u; v and
@p
@y

= 0

Exit boundary: This boundary poses the biggest di�culty in computational modelling of
a range of �uid �ow problems. Especially �ows with unsteady wake or convecting vortices,
prescription of this boundary condition is of paramount importance since it not only changes
the �ow pattern but also a�ects convergence. Two kinds of boundary conditions at this plane
are found to be most applicable. The �rst one is prescribing the derivative of all the dependent
variables to zero. This is known as Neumann boundary condition (NBC)

@�
@x

= 0; �= u; v

On the other hand, convective boundary condition (CBC) given by

@�
@t

+Uc
@�
@x

= 0; �= u; v

is found to work quite favourably in terms of passage of vortical structure in undistorted
form and smooth convergence. The velocity Uc can be taken as the free stream velocity or
an averaged one at the exit, of which the second approach has been adopted in the present
calculations. Pressure boundary condition is of Dirichlet type at this plane, p= 0.

3. NUMERICAL DETAILS

A �nite volume method with non-staggered arrangement of the variables has been developed
to solve the set of momentum equations and continuity equation. The computational domain
has been divided into three subdomains, as shown in Figure 1, which facilitates the use
of structured grids. Pressure velocity coupling is enforced through momentum interpolation.
Implicit Crank–Nicolson scheme has been used for the time integration. Convective terms are
discretized by a QUICK scheme applied to non-uniform grids while the di�usive terms are
discretized by the second-order central di�erence scheme.

Momentum and continuity equations take the following form when integrated over a �nite
volume:

un+1
iP − uniP

�t
+

1
2
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f un+1
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if

)
= − ∑
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1
2Re

(∑
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dfi +
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Fndfi

)
(3)

∑
f
Fn+1
f = 0 (4)

where P and f denotes the cell centre and the cell faces, respectively. Here indices i= 1; 2
correspond to streamwise(x) and cross-stream(y) directions, respectively. In the �rst step,
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a provisional velocity �eld is computed excluding the pressure in the above equation with
mass �uxes taken as the latest available one

u∗
iP − uniP
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(∑
f
Fn+1;l
f u∗

if +
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f
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n
if

)
=

1
2Re

(∑
f
F∗
dfi +

∑
f
Fndfi

)
(5)

The face velocities are then calculated by adding a pressure gradient term with the linearly
interpolated face values from the provisional velocities

uf =  L(u∗
P; u

∗
nb) − �t

�
(∇p)f (6)

where  L denotes linear interpolation. Thus the mass �ux is

Ff =F∗
f − �t(∇p)f :Sf (7)

When sum of mass �ux calculated from Equation (7) over all the faces of a �nite volume is
set to zero (Equation (4)) the following equation for the pressure is obtained:

∑
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Fn+1;l+1
f =
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f − �t
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f

(∇p)f :Sf = 0 =⇒ ∑
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∑
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Equation (8) is the counterpart of the Poisson equation for pressure correction in SIMPLE-like
algorithms. The converged pressure of Equation (8) is used for new estimate of mass �ux
in Equation (7). Here l denotes the �ux loop counter which is iterated until �ux converges.
The converged mass �ux along with the pressure that estimates it correspond to the perfectly
divergence free velocity �eld. These quantities are then used to solve Equation (3) for the
velocities un+1 and vn+1. The sequential steps that constitute the solution method is written
below

1. Initialize the variables and start with mass �ux, Fn+1;l
f =Fnf.

2. Solve Equation (5) for u∗ and v∗.
3. Compute F∗

f required for the pressure equation.
4. Solve the pressure equation, Equation (8).
5. Estimate new mass �ux from Equation (7) and set l= l+ 1.
6. Repeat steps 2–5 till convergence of the �uxes, |Fn+1;l+1

f − Fn+1;l
f |¡�.

7. Solve Equation (3) for un+1 and vn+1 using converged �uxes and pressure.
8. Set n= n+ 1 and repeat all the steps 2–7 for the next time step.

All system of simultaneous linear equations arising from Equations (3), (5) and (8) are solved
by the SOR technique. The convergence is assessed after each iteration and solution residual
(in the root mean square sense) is brought below 10−5 for Equations (5) and (8) while 10−6

for the �ux convergence. In all the calculations reported in the present paper time-dependent
solution has been obtained by marching in time with �t= 0:01.

Structured grid has been generated in the three subdomains separately using the stretching
transformation proposed by Roberts [19] which re�nes the grid in the vicinity of the solid
walls. A typical grid showing the full view as well as a close view is shown in Figure 2.
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Figure 2. A typical grid (230 × 160) used in the calculation: (a) full view; and (b) zoomed view.

3.1. Computer code validation

Results obtained with the computer code developed in the present study has been compared
with published literatures [11, 13, 20–22] for uncon�ned �ow past square cylinder in the range
106Re6200. While Figure 3(a) shows the comparison for the force coe�cients CD, CLrms,
Figure 3(b) shows the comparison for the Strouhal number. It is clear that the present results
compare well with the published literatures, especially the rms of the lift coe�cient which
can be attributed as the most stringent parameter for comparison.
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Figure 3. Comparison with published results for square cylinder: (a) CD and CLrms; and (b) St.

Table I. Results for grid re�nement test with Re= 100, Xu = 9, Xd = 20.

Grid size CD CDp CLrms St

180 × 120 1.7773 1.3177 0.2963 0.1988
230 × 160 1.7607 (0.93) 1.3034 (1.09) 0.2968 (0.17) 0.1966 (1.10)
280 × 200 1.7549 (0.33) 1.2986 (0.37) 0.2974 (0.20) 0.1962 (0.20)

3.2. E�ect of grid re�nement

A grid re�nement study has been carried out on three progressively re�ned grids, namely
180 × 120, 230 × 160 and 280 × 200 where number of grid nodes distributed over a side of
the cylinder are 50, 60 and 70, respectively. During the re�nement, the smallest and the largest
cell size is maintained approximately at �= 0:004 and � = 0:5, respectively. The results are
summarized in Table I with percentage change in the parameters written inside the bracket.
The variation in CD, CDp and St is around 1% when we moved from the coarsest grid level
to the intermediate one. But when the grid was further re�ned, the variation reduced and
became close to 0:3%. However, variation in CLrms remained small during re�nement. This
has led us to use 230 × 160 grids for all subsequent calculations.

4. RESULTS AND DISCUSSION

4.1. E�ect of domain size

In problems with unsteady wake and convecting vortices, length of the downstream section
from the blu� body plays a signi�cant role in both quality of the results and the convergence
properties. Due to the presence of convecting vortices, too small length of the downstream
section can distort the large scale structures. However, as found by Sohankar et al. [23],
with domain height H = 20h, presence of far �eld boundary hardly in�uences the �ow near
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Table II. Results for domain dependence test with Re = 100.

Domain length CD CDp CLrms St

Xu = 6; Xd = 15 1.8168 1.3490 0.3161 0.2021
Xu = 9; Xd = 20 1.7607 (3.08) 1.3034 (3.38) 0.2968 (6.11) 0.1966 (2.72)
Xu = 12; Xd = 25 1.7414 (1.10) 1.2879 (1.89) 0.2916 (1.75) 0.1986 (1.02)
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Figure 4. Pressure iterations for cases with di�erent domain size.

the cylinder leading us to use H = 20h in the present study. As reported by a number of
research groups [23–27], convective boundary condition (CBC) is less restrictive as compared
to the Neumann boundary condition (NBC). It facilitates a smooth passage of the vortices
that are shed from the blu� body. In the present study, we have limited ourselves to the
use of CBC. Results, summarized in Table II, have been obtained for di�erent upstream
and downstream lengths with CBC as the exit boundary condition. In all the calculations the
smallest (�= 0:004) and the largest cell size (� = 0:5) have been approximately retained. This
has led to use of �ner mesh for the case with larger upstream and downstream lengths. The
combination Xu = 6h, Xd = 15h has been proved to be too restrictive as increasing the sizes
leads to considerable changes in the integral parameters as can be seen in Table II. However,
increasing the domain size to Xu = 12h, Xd = 25h leads to a marginal change (below 2%)
in force parameters and St as shown in the table. Figure 4 shows the number of pressure
iterations in each time step during the time integration of the momentum equations. With the
increase in the domain size, the overall mesh size increases number of iterations required in
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each time increment also increases. Thus, e�ect of total mesh size overrides the advantages
obtainable with larger domain size with CBC condition.

4.2. Onset of vortex shedding

In wake �ows the frequency of oscillations remains the same for a considerable region down-
stream of the blu� body emphasizing the global nature of the �ow dynamics. The experimen-
tal studies of Goujon-Durand et al. [28] showed that the amplitude of the oscillations has a
well de�ned maximum and its value and position of occurrence depends on Re while Du�sek
et al. [29] stressed the importance of the higher nonlinear harmonics in the dynamics of the
�ow. In the present study, the threshold for vortex shedding has been evaluated using the
global modes of u and v velocities on y= 0. The procedure used is as follows. We have
chosen 30 so-called history points on y= 0 at which both u and v velocity signal has been
recorded. Figure 5(a) shows the peak to peak amplitude for u and v velocities at the history

x

A

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Re =
Re =
Re =

/U

u

v

45

42
43

8

x/xmax

A
/A

m
ax

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Re =
Re =
Re =
Re =
Re =
Re =

42
43

45
43
42
45

u

v

∗

∗ ∗
∗

Re

A

36 38 40 42 44 46 48 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

∗

(a) (b)

(c)

Figure 5. (a) Amplitude of oscillations for u and v velocities on y= 0; (b) renormalized global modes;
and (c) Amax for u and CL, A2

max for v as a function of Re.
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Figure 6. Steady state streamlines: (a) Re= 20; (b) Re= 30; and (c) Re= 35.

points at three di�erent Re close to Recr. Amplitude of oscillations for both u and v veloci-
ties, in all cases, increases in the downstream direction and after reaching a maximum value
decreases. The value of the maximum amplitude and its position is di�erent for u and v
velocities and depends on Re. Following Goujon-Durand et al. [28], amplitude and its posi-
tion has been renormalized by Amax and xmax, respectively. It has been found that the normal-
ized curves for di�erent Re collapse to a universal form (see Figure 5(b)). This shows the
global nature of the wake whose properties are largely independent of the shape of the blu�
body and downstream velocity distribution. The functional relationship between the maximum
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amplitude and Reynolds number has been used to extract the critical behaviour. Following
Du�sek et al. [29], Amax for u and A2

max for v has been used to predict the critical Reynolds
number. A linear �t, as shown in Figure 5(c), gives Recr = 39:9 which is obtained by extrap-
olating the value of Amax(A2

max) to zero. The peak to peak amplitude of lift coe�cient at the
saturation state has also been plotted against Re which predicts the same Recr as can be seen
from Figure 5(c). The predicted value of Recr is higher than Recr = 35 obtained by Jackson
[14] who used a blockage ratio of 1=15. Zielinska and Wesfreid [15] found the value of Recr

to be 38.3 while it was 39.6 in the numerical and theoretical study of Du�sek et al. [29]. The
di�erence between these values can be attributed to the use of di�erent grid, blockage ratio
and the e�ect of sharp edges of the cylinder.

4.3. Steady and unsteady periodic �ow

Figure 6 shows the streamline plots in the vicinity of the cylinder at Re= 20, 30 and 35. At
this subcritical range two steady symmetrical vortices form behind the cylinder whose size
increases with increase in Re. Recirculation length (Lr), de�ned by the reattachment of the �uid
layer separated from the two rear-end vertices of the cylinder, has been obtained by monitoring
the streamwise velocity along the line of symmetry. The extent of recirculation region spreads
with increase in Reynolds number as can be seen from the �gure. A linear Lr–Re relationship
has been obtained by least square �t, shown below with other blu� con�gurations

Lr
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Figure 8. Equispaced (�=6) snapshots within a shedding cycle, Re= 100.
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Figure 9. Equispaced (�=6) snapshots within a shedding cycle, Re= 150.
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It is clear from Figure 7 that the recirculation length for triangular cylinder is considerably
larger than that of circular cylinder but only marginally higher than that of square cylinder.

The �ow becomes unsteady and periodic around Re=Recr. In this study, the supercritical
range simulated is 506Re6250. Laminar vortex shedding is described here with the help
of instantaneous streamlines and vorticity contours corresponding to six equispaced instants
within a shedding cycle. Two vortices form at the rear-end vertices of the cylinder and are
shed alternately in the wake, as can be seen in Figure 8. Two types of inviscid critical points,
namely ‘centre’ and ‘saddle’ can be seen from the �gure. A critical point, following Perry
et al. [30] and Eaton [31], is a location where slope of streamline becomes inde�nite with
the point of zero velocity is referred to as the ‘centre’ while the point where two stream lines
intersect is referred to as the ‘saddle’. In the present study, at Re= 100, the saddle and centre
of a shed vortex disappear before a new vortex is shed. This observation is consistent with
Eaton [31] but contrary to Perry et al. [30] where coexisting centres and saddles were found.
This shows the similarity in vortex shedding mechanism for circular, square and triangular
cylinder, at least in the lower range of supercritical region of Re. Instantaneous vorticity
contours, shown in Figure 8 further reveals the alternate formation and shedding of vortices
from the rear-end vertices of the cylinder. Due to its streamlined shape, separation in a
triangular cylinder always occurs at the rear-end vertices leading to two separated shear layers
from the two vertices that are stretch, bend and �nally disconnect into the wake. The neck
between the tip and the main body of a growing vortex stretches and bend leading to separation
from the main body. The positive and negative vorticity, corresponding to counter-clockwise
and clockwise motion, shown by solid and dashed lines, respectively, alternatively engulf the
rear end of the cylinder. These layers exhibit a �apping motion while the shear layers moves
into the wake only to be convected downstream in the form of vortical structure which scales
with the side of the cylinder. These vortices remain in the same half about the centreline
from where they are shed. Same mechanism and features of vortex shedding has been found
for Re= 150 and 200, shown in Figures 9 and 10, respectively. The results at Re= 250,
shown in Figure 11, reveals the same shedding mechanism as that of lower Re. A single
dominating frequency of the lift signal, shown in Figure 12 precludes the possibility of a
pairwise shedding at this Re. Occurrence of inviscid critical points are considerably di�erent
at this Re with a number of saddles and centres are found to coexist in the presence of
strong wavering of the wake which widens considerably from lower Re. Vorticity snapshots
of Figure 11 shows increased motion of the region with concentrated vorticity at the rear
end. The extent of bending of neck of the vortices that form at the vertices increase with
the main body along with its tip shows marginal squeezing. Present results for Re= 200 and
250, in which range a three-dimensional wake transition can be expected, is at best can be
regarded as the predictions at two-dimensional limit. A detailed three-dimensional calculations
is needed to explore the three-dimensional nature of the �ow at moderate Re.

4.4. Force coe�cients and Strouhal number

Figure 13 shows how the integral parameters, namely CD, CL, CLrms and Strouhal number
change with Re. In the subcritical range (Re¡Recr) CD decreases as Re reaches the critical
value (Figure 13(a)) due to diminishing e�ect of viscous force, a fact found in square cylin-
der con�guration also. It should be noted that at this range of Re viscous drag dominates
over the form drag and as Re reaches the critical value pressure drag becomes increasingly
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Figure 10. Equispaced (�=6) snapshots within a shedding cycle, Re= 200.
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Figure 11. Equispaced (�=6) snapshots within a shedding cycle, Re= 250.

important. In contrast to the square cylinder con�guration, drag coe�cient has been found
to be an increasing function with Re above Recr as shown in Figure 13(b). This can be at-
tributed to the streamlined shape of the triangular cylinder which facilitates formation of a
thin boundary layer on the surfaces facing the incoming �ow. Pressure drag coe�cient follows
the same trend as the total drag as with the increase in Re the size of the wake increases.
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Figure 12. Fundamental frequency of the Drag and Lift coe�cient
(shown in the inset) signal at Re= 250.

The di�erence between these two coe�cients, a measure of the friction drag, does not change
appreciably in the range of Re studied in the present work. At all Re studied here, dominant
frequency of drag coe�cient has been seen to be twice that of the lift coe�cient. This is
shown in Figure 12 for Re= 250 where power spectrum density (PSD) of the drag coe�cient
has been shown in inset. Variation of Strouhal number with Re has been shown in Figure
13(c). The frequency of vortex shedding increases linearly with Re which is prolonged to
Re=Recr ≈ 2, a fact observed by Kahawita and Wang [32] in their computations for trapezoidal
blu� bodies. Further increase in Re causes the curve to increase at a slower rate until it
reaches a �at maximum at around Re= 150. After this maximum is reached, the frequency
of shedding falls of. This interesting behaviour was also observed in the experiments of
Okajima [33].

4.5. Pathlines and streaklines

Figure 14 shows the trajectories of particles released ahead of the cylinder. Particles have
been tracked by integrating the Lagrangian description

dx(t)
dt

= u(x; t)

While particles are time-advanced using a second-order accurate time integration technique,
velocities are interpolated from the neighbouring cells. It is apparent from the �gure that with
the increase in Re, wake containing the von K�arm�an vortex street widens showing the extent
of transverse transport which scales with the dominating large vortical structures. Particles
hardly move to the central zone of the wake as they mainly traverse along the edge of the
wake. A variety of residence time of di�erent particles are revealed as the particles entering
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Figure 13. Integral parameters: (a) CD and CDp for 106Re640; (b) CD, CDp
and CLrms for 506Re6250; and (c) St.

close to the centreline are often bound for a long period in the near wake where vortices are
forming.

Instantaneous streaklines generated using the tracked particles are shown in Figure 15. The
particles are swept by the vortices and shed into the von K�arm�an vortex street. This is an
excellent means of visualization as it clearly shows the alternate structure of shed vortices
in the wake. Indeed, the spiral arrangement of the particles are the location of concentrated
vorticity as can be seen from vorticity contours of Figures 8–11. As Reynolds number is
increased, vorticity concentration is found to be increasingly localized in the near wake while
the vortices spread in the far wake region. Also with the increase in Re, particle paths become
more and more disorganized. At all Reynolds number studied in the present work, vortices are
found to be shed alternately from top and bottom vertices of the cylinder with no evidence
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Figure 14. Particle trajectories: (a) Re= 100; (b) Re= 150; (c) Re= 200; and (d) Re= 250.

of pairwise shedding even at Re= 250. This fact is further evident form the single-frequency
spectrum of the lift coe�cient signal shown in Figure 12.

5. CONCLUSIONS

We have presented numerical simulations of two-dimensional laminar �ow past a triangular
cylinder. A multiblock �nite volume method has been developed to numerically integrate the
unsteady governing equations. Basing on the simulation results we conclude the following.

Global modes of u and v velocities give a critical Reynolds number of 39.9 which is close
to some earlier results. Test for e�ect of domain size shows that changes in the solution is
considerable working with lower downstream length. However, after a certain length solution
ceases to change. At the subcritical Re, reattachment length follows a linear relationship with
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Figure 15. Instantaneous streaklines: (a) Re= 100; (b) Re= 150; (c) Re= 200; and (d) Re= 250.

Re. The vortex shedding mechanism is quite similar to the square cylinder case. However,
the appearance of multiple frequency or pairwise shedding has not been observed even at
Re= 250. Vortex shedding phenomena is associated with a �apping motion of the shear layer
near the separation point. Particle trajectories and the streaklines provide a convenient means
to visualize the wake. With the increase in Re, wavering motion of the wake becomes severe
and the �ow is more and more disorganized.
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